On the Use of Antipodal Optimal Dimensionality Sampling Scheme on the Sphere for Recovering Intra-voxel Fibre Structure in Diffusion MRI

نویسندگان

  • Alice P. Bates
  • Zubair Khalid
  • Rodney A. Kennedy
چکیده

In diffusion magnetic resonance imaging (dMRI), the diffusion signal can be reconstructed from measurements collected on single or multiple spheres in q-space using a spherical harmonic expansion. The number of measurements that can be acquired is severely limited and should be as small as possible. Previous sampling schemes have focused on using antipodal symmetry to reduce the number of samples and uniform sampling to achieve rotationally invariant reconstruction accuracy, but do not allow for an accurate or computationally efficient spherical harmonic transform (SHT). The recently proposed antipodal optimal dimensionality sampling scheme on the sphere requires the minimum number of samples, equal to the number of degrees of freedom for the representation of the antipodal symmetric band-limited diffusion signal in the spherical harmonic domain. In addition, it allows for the accurate and efficient computation of the SHT. In this work, we evaluate the use of this recently proposed scheme for the reconstruction of the diffusion signal and subsequent intra-voxel fibre structure estimation in dMRI. We show, through numerical experiments, that the use of this sampling scheme allows accurate and computationally efficient reconstruction of the diffusion signal, and improved estimation of intra-voxel fibre structure, in comparison to the antipodal electrostatic repulsion and spherical code sampling schemes with the same number of samples. We also demonstrate that it achieves rotationally invariant reconstruction accuracy to the same extent as the other two sampling schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudometrically constrained centroidal voronoi tessellations: Generating uniform antipodally symmetric points on the unit sphere with a novel acceleration strategy and its applications to diffusion and three-dimensional radial MRI.

PURPOSE The purpose of this work is to investigate the hypothesis that uniform sampling measurements that are endowed with antipodal symmetry play an important role in image quality when the raw data and image data are related through the Fourier relationship. Currently, it is extremely challenging to generate large and uniform antipodally symmetric point sets suitable for three-dimensional rad...

متن کامل

Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI

We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have propos...

متن کامل

Persistent angular structure: new insights from diffusion magnetic resonance imaging data

We determine a statistic called the (radially) persistent angular structure (PAS) from samples of the Fourier transform of a three-dimensional function. The method has applications in diffusion magnetic resonance imaging (MRI), which samples the Fourier transform of the probability density function of particle displacements. The PAS is then a representation of the relative mobility of particles...

متن کامل

Regularized diffusion tensor MRI for high angular resolution ODF estimation and fibre tractography

J. S. Campbell, P. Savadjiev, G. B. Pike, K. Siddiqi Montreal Neurological Institute, Montreal, Quebec, Canada, McGill Centre for Intelligent Machines, Montreal, Quebec, Canada Introduction High angular resolution diffusion (HARD) MRI can be used to infer multiple subvoxel fibre directions [1-2], and this information can be used to improve the precision of fibre tractography over that achieved ...

متن کامل

P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images

Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015